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Workplan

Workplan
1 MATLAB R© basics — variable types, control structures, etc.;
2 solving ordinary differential equations in MATLAB R©;
3 basic plotting.

Today’s specific aims

Writing MATLAB R© script to solve continuous logistic equation.
Comparison of the numerical and analytical solutions.
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Basic Data Types

Numerical
a=2.3;
b=5.89e-04;

Vectors

a=[2, 3, 4, 5];
a=2:5; %result: [2 3 4 5]
a=2:2:6; %result: [2 4 6]
a=linspace(2,5,4); %result: [2 3 4 5]

Matrices

a=[2, 3; 1, 2];
a=ones(2,3); %2x3 matrix with ones
b=zeros(3,4,5); %3x4x5 matrix with zeros
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Basic Data Types

Strings

name = ’logistic’;

i=1;
fileName = [’out’ int2str(i) ’.mat’];

Structure

model.name = ’logistic’
model.r = 0.1;
model.K = 10;

model.(’name’) = ’logistic2’;



MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic Matrix Operations

Concatenating matrices

A=[1 2 3];
B=[4 5 6];
C=[A, B];
D=[A; B];

Accessing and assigning matrix elements

A(2)=4;
D(2,2)=3;

Accessing submatrix

D(:,[2 3])
D(2:end,2:end)
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Basic Matrix Operations

Multiplication and division of matrices

A=[1 2];
B=[4 5];
C=A*B; C1=A^2; %typical multiplication
D=A.*B; C1=A.^2; %pair-waise operations
E=A./B; %pair-waise operation

Element-wise functions

A=[2 3 4];
B=sin(A);
C=exp(A);

Find more by typing ”doc elmat” — look into documentation.
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Vectorization example

N=10000; %matrix size

A=rand(N,N);
B=zeros(size(A));

tic
for i=1:N
for j=1:N
B(i,j)=sin(A(i,j)); %evaluation time 5.83 sec

end
end
toc

tic
B=sin(A); %evaluation time 0.94 sec

toc
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Basic Control Structures - Conditional clauses

IF
if a1<3
a2=4;

elseif a1>4
a2=’jablko’;

else
a2=a2’;

end

SWITCH
switch a1
case 2
a2=’jablko’;

otherwise
statements

end
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Basic Control Structures - Loops

FOR
for i = 1:2:20
A(i) = 2*i;

end

WHILE
while i<=20
A(i) = 2*i;
i=i+1;

end
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Basic File Types

Program files can be:

scripts — execute a series of MATLABMATLAB R© statements;

clear all;
a1 = 3;
a2 = sin(a1);

functions — accept input arguments and produce output.

function y=test(a1,a2)
y=sin(a1)*a2;

Both scripts and functions contain MATLAB R© code, and both are stored
in text files with a .m extension (function name should be the same as
the file name!).

Functions have their own workspace, separate from the base workspace.
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Good practice in complicated project is to have functions in separate
folders.

If you have some set of frequently used functions (your own
functions) you can keep them in a fixed specific folder.

In order to include function into current workspace you can use
addpath function.

If you have your function in ’Additional functions’ subfolder you should
have

addpath(’/Additional functions’)

in your main script.
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Exercise 1

Create MATLAB R© function which takes matrix A as an argument and
returns its maximal square sub-matrix. Place the function file in the
’Additional functions’ folder.

Create MATLAB script in which the following :

1 create any two matrices: 3x4 A and 3x5 B;
2 create matrix C in which first 3 columns come from A and the rest

come from B;
3 assign to the variable D the maximal square sub-matrix of C;
4 calculate sine of each element of E, where E is the matrix D with

the opposite column order.
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Exercise 1 - solution

Function returning maximal square submatrix (in file
squareSubmatrix.m):

function B = squareSubmatrix(A)

s=size(A); %s(1) - no. of rows
%s(2) - no. of columns

if s(1) >= s(2)
B = A(1:s(2),:);

else
B = A(:,1:s(1));

end

end
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Exercise 1 - solution

Script (in file anyname.m):

clear all;

addpath(’Additional functions\’)

A=rand(3,4); B=ones(3,5);

C=[A(:,1:3) B];

D=squareSubmatrix(C);

sin(D(:,end:-1:1))
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Excercise 2

Implement MATLAB R© function taking the current populations size N
and returning the derivative of the logistic equation:

Ṅ = rN(1− N

K
) .

Model parameters should be supplied as a structure.
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Exercise 2 - solution

function dNdt = logisticRHS( N, par )

dNdt=par.r*N*(1-N/par.K);

end
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ODE solvers

Available solvers

RK methods: ode45, ode23

Adams: ode113

Trapezoidal rule: ode23t

Others: ode15s, ode23s, ode23tb, ode15i

ode45 in details

sol = solver(@odefun,[t_0 t_end],initial_condition,...
options,...);

Output variable sol is a structure.
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Excercise 3

Write MATLAB R© script for solving logistic equation

Ṅ = rN(1− N

K
) .
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Exercise 3 - solution

clear all;

N0=3; %initial condition
Tend=30; %end of the time span

params.r=0.1;
params.K=10;

sol = ode45(@logisticRHS,[0 Tend],N0,[],params);

Important: We need to modify the definition of logisticRHS function to

function dNdt = logisticRHS( t, N, par )

in order to use it with ode45 (add time dependence).
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x = -pi:.1:pi;
y = sin(x);
plot(x,y)
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Basic plot options

xlim([0 100]) %set limits for x-axis
ylim([0 10]) %set limits for y-axis

xlabel(’Time(t)’) %set x-axis label
ylabel(’N(t)’) %set y-axis label

title(’Logistic equation’) %plot title

grid on;
box on;
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Excercise 4

Add plotting feature to the script from previous exercise (logistic
equation solver).
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Exercise 4 - solution

Add the following lines to the script from Ex. 3:

plot(sol.x,sol.y)

xlabel(’Time(t)’) %set x-axis label
ylabel(’N(t)’) %set y-axis label

title(’Solution to logistic equation’) %plot title

grid on;
box on;



MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Excercise 5

Knowing the exact solution to the logistic equation

N(t) =
KN0e

rt

K + N0 (ert − 1)

Plot the error between the numerical and analytical solutions.
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Exercise 5 - solution

Step 1. Implement function returning value of analytical formula:

function N = analyticalSol( t, N0, par )
N=par.K*N0*exp(par.r*t)./(par.K+N0*(exp(par.r*t)-1));

end

Step 2. Add the following lines to the script from Ex. 5:

solA=analyticalSol(sol.x,N0,params);

plot(sol.x,solA-sol.y)
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Excercise 6

Using the odeset function decrease solver tolerances (RelTol and AbsTol)
to 1e-12 and plot the error between the numerical and analytical
solutions.

How much longer did the calculations take?
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Exercise 6 - solution

Modify the way in which we use ode45 function in the following
way:

options=odeset(’RelTol’,1e-12,’AbsTol’,1e-12);

sol = ode45(@logisticRHS,[0 Tend],N0,options,params);

To measure the time needed for evaluation of some code we use
tic and toc:

tic

some code line 1...
some code line 2...

toc
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