
MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

MATHEMATICAL AND COMPUTER
MODELING OF NONLINEAR BIOSYSTEMS I
COMPUTER LABORATORY I: INTRODUCTION TO MATLAB R©

Ph. D. Programme 2013/2014

Project co-financed by European Union within the framework of European Social Fund

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Workplan

Workplan
1 MATLAB R© basics — variable types, control structures, etc.;
2 solving ordinary differential equations in MATLAB R©;
3 basic plotting.

Today’s specific aims

Writing MATLAB R© script to solve continuous logistic equation.
Comparison of the numerical and analytical solutions.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Interface overview

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Interface overview

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Interface overview

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Interface overview

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Interface overview

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Interface overview

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic Data Types

Numerical
a=2.3;
b=5.89e-04;

Vectors

a=[2, 3, 4, 5];
a=2:5; %result: [2 3 4 5]
a=2:2:6; %result: [2 4 6]
a=linspace(2,5,4); %result: [2 3 4 5]

Matrices

a=[2, 3; 1, 2];
a=ones(2,3); %2x3 matrix with ones
b=zeros(3,4,5); %3x4x5 matrix with zeros

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic Data Types

Strings

name = ’logistic’;

i=1;
fileName = [’out’ int2str(i) ’.mat’];

Structure

model.name = ’logistic’
model.r = 0.1;
model.K = 10;

model.(’name’) = ’logistic2’;

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic Matrix Operations

Concatenating matrices

A=[1 2 3];
B=[4 5 6];
C=[A, B];
D=[A; B];

Accessing and assigning matrix elements

A(2)=4;
D(2,2)=3;

Accessing submatrix

D(:,[2 3])
D(2:end,2:end)

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic Matrix Operations

Multiplication and division of matrices

A=[1 2];
B=[4 5];
C=A*B; C1=A^2; %typical multiplication
D=A.*B; C1=A.^2; %pair-waise operations
E=A./B; %pair-waise operation

Element-wise functions

A=[2 3 4];
B=sin(A);
C=exp(A);

Find more by typing ”doc elmat” — look into documentation.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Vectorization example

N=10000; %matrix size

A=rand(N,N);
B=zeros(size(A));

tic
for i=1:N
for j=1:N
B(i,j)=sin(A(i,j)); %evaluation time 5.83 sec

end
end
toc

tic
B=sin(A); %evaluation time 0.94 sec

toc

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic Control Structures - Conditional clauses

IF
if a1<3
a2=4;

elseif a1>4
a2=’jablko’;

else
a2=a2’;

end

SWITCH
switch a1
case 2
a2=’jablko’;

otherwise
statements

end

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic Control Structures - Loops

FOR
for i = 1:2:20
A(i) = 2*i;

end

WHILE
while i<=20
A(i) = 2*i;
i=i+1;

end

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic File Types

Program files can be:

scripts — execute a series of MATLABMATLAB R© statements;

clear all;
a1 = 3;
a2 = sin(a1);

functions — accept input arguments and produce output.

function y=test(a1,a2)
y=sin(a1)*a2;

Both scripts and functions contain MATLAB R© code, and both are stored
in text files with a .m extension (function name should be the same as
the file name!).

Functions have their own workspace, separate from the base workspace.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Good practice in complicated project is to have functions in separate
folders.

If you have some set of frequently used functions (your own
functions) you can keep them in a fixed specific folder.

In order to include function into current workspace you can use
addpath function.

If you have your function in ’Additional functions’ subfolder you should
have

addpath(’/Additional functions’)

in your main script.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 1

Create MATLAB R© function which takes matrix A as an argument and
returns its maximal square sub-matrix. Place the function file in the
’Additional functions’ folder.

Create MATLAB script in which the following :

1 create any two matrices: 3x4 A and 3x5 B;
2 create matrix C in which first 3 columns come from A and the rest

come from B;
3 assign to the variable D the maximal square sub-matrix of C;
4 calculate sine of each element of E, where E is the matrix D with

the opposite column order.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 1 - solution

Function returning maximal square submatrix (in file
squareSubmatrix.m):

function B = squareSubmatrix(A)

s=size(A); %s(1) - no. of rows
%s(2) - no. of columns

if s(1) >= s(2)
B = A(1:s(2),:);

else
B = A(:,1:s(1));

end

end

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 1 - solution

Script (in file anyname.m):

clear all;

addpath(’Additional functions\’)

A=rand(3,4); B=ones(3,5);

C=[A(:,1:3) B];

D=squareSubmatrix(C);

sin(D(:,end:-1:1))

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Excercise 2

Implement MATLAB R© function taking the current populations size N
and returning the derivative of the logistic equation:

Ṅ = rN(1− N

K
) .

Model parameters should be supplied as a structure.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 2 - solution

function dNdt = logisticRHS(N, par)

dNdt=par.r*N*(1-N/par.K);

end

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

ODE solvers

Available solvers

RK methods: ode45, ode23

Adams: ode113

Trapezoidal rule: ode23t

Others: ode15s, ode23s, ode23tb, ode15i

ode45 in details

sol = solver(@odefun,[t_0 t_end],initial_condition,...
options,...);

Output variable sol is a structure.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Excercise 3

Write MATLAB R© script for solving logistic equation

Ṅ = rN(1− N

K
) .

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 3 - solution

clear all;

N0=3; %initial condition
Tend=30; %end of the time span

params.r=0.1;
params.K=10;

sol = ode45(@logisticRHS,[0 Tend],N0,[],params);

Important: We need to modify the definition of logisticRHS function to

function dNdt = logisticRHS(t, N, par)

in order to use it with ode45 (add time dependence).

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

x = -pi:.1:pi;
y = sin(x);
plot(x,y)

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Basic plot options

xlim([0 100]) %set limits for x-axis
ylim([0 10]) %set limits for y-axis

xlabel(’Time(t)’) %set x-axis label
ylabel(’N(t)’) %set y-axis label

title(’Logistic equation’) %plot title

grid on;
box on;

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Excercise 4

Add plotting feature to the script from previous exercise (logistic
equation solver).

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 4 - solution

Add the following lines to the script from Ex. 3:

plot(sol.x,sol.y)

xlabel(’Time(t)’) %set x-axis label
ylabel(’N(t)’) %set y-axis label

title(’Solution to logistic equation’) %plot title

grid on;
box on;

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Excercise 5

Knowing the exact solution to the logistic equation

N(t) =
KN0e

rt

K + N0 (ert − 1)

Plot the error between the numerical and analytical solutions.

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 5 - solution

Step 1. Implement function returning value of analytical formula:

function N = analyticalSol(t, N0, par)
N=par.K*N0*exp(par.r*t)./(par.K+N0*(exp(par.r*t)-1));

end

Step 2. Add the following lines to the script from Ex. 5:

solA=analyticalSol(sol.x,N0,params);

plot(sol.x,solA-sol.y)

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Excercise 6

Using the odeset function decrease solver tolerances (RelTol and AbsTol)
to 1e-12 and plot the error between the numerical and analytical
solutions.

How much longer did the calculations take?

MATLAB basics
Ordinary differential equations (ODEs) with MATLAB

Plotting

Exercise 6 - solution

Modify the way in which we use ode45 function in the following
way:

options=odeset(’RelTol’,1e-12,’AbsTol’,1e-12);

sol = ode45(@logisticRHS,[0 Tend],N0,options,params);

To measure the time needed for evaluation of some code we use
tic and toc:

tic

some code line 1...
some code line 2...

toc

	MATLAB basics
	Ordinary differential equations (ODEs) with MATLAB
	Plotting

