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BAROREFLEX MECHANISMS

Fig 2. Sympathetic and parasympathetic baroreflex

(source: The McGraw-Hill Companies, Inc)
Fig 1. Human cardiovascular system

[source: www.resmedica.pl]



OVERVIEW
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MODELLING STEPS

1. Build the cardiovascular system model

2. Use parameters from the literature (resistances, compliances, pressures etc.)

3. Fit missing parameters (to assure steady-state)

4. Add baroreflex mechanisms

5. Add a possibility of simulating an open-loop or closed-loop system

6. Add a possibility of simulating a hemorrhage

SIMULATIONS

1. Perturb some parameters and find new steady-state

2. Show Frank-Starling relationship for different arterial pressures (different afterload)

3. Check sensitivity of arterial pressure and cardiac output to all vascular resistances

4. Show the operation of baroreflex in open-loop system

5. Show the importance of baroreflex in closed-loop system (simulate a hemorrhage)

6. Compare partial baroreflex with full baroreflex

7. Show venous capacity control
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CARDIOVASCULAR SYSTEM

• 2 cardiac compartments

• 4 vascular compartments (systemic arterial, systemic venous, pulmonary arterial, pulmonary venous)

• Windkessel model - each compartment represented by:

• hydraulic resistance (energy dissipation, pressure losses)

• capacity (blood volume stored in the compartment at a given pressure)

Fig 3. An electric analogue of the cardiovascular system [Ursino et al.]

P – pressure

C – capacity/compliance

R – resistance

sa – systemic arteries

sc – systemic veins

ra/la – right/left atrium

pa/pv – pulmonary arteries/veins

ql/qr – left/right cardiac output

isv – amount of blood volume injected into or 

subtracted from the sv compartment

� = �௨, + ��
Compartment volume: 

(unstressed volume + stressed volume)
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CVS EQUATIONS
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CAROTID BAROREFLEX MECHANISM

Fig 4. Feedback regulatory mechanism acting on the cardiovascular system [Ursino et al.]
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BAROREFLEX MECHANISM

�ܴ௦��� = 1�� �� − ܴ௦� �� = ܴ�� + ܴ ∙ ݁�� ��௦ − ��௦ݎଵ1 + ݁�� ��௦ − ��௦ݎଵ
��ܶ� = 1�� �� − ܶ
��௨௦௩�� = 1�� �� − �௨௦௩

�� = ܶ�� + ܶ ∙ ݁�� ��௦ − ��௦ݎଶ1 + ݁�� ��௦ − ��௦ݎଶ
�� = ��� + � ∙ ݁�� ��௦ − ��௦ݎଷ1 + ݁�� ��௦ − ��௦ݎଷ

��௦௩�� = − �௦௩ − �௦௩ + �ସ ∙ ��௦ − ��௦��



SIMULATIONS
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FINDING NEW STEADY-STATE OF THE SYSTEM
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Example: 

a decrease in systemic arterial compliance (from 4 ml/mmHg to 1 ml/mmHg) – stiffness of systemic arteries
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FRANK-STARLING RELATIONSHIP 
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Stroke volume slightly decreases while stroke work slightly increases with increasing afterload (arterial pressure)
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SENSITIVITY

Systemic arterial resistance has the highest impact on arterial pressure.
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SENSITIVITY

Systemic arterial resistance has the highest impact on cardiac output.
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BAROREFLEX IN OPEN-LOOP SYSTEM

params.Pcs = 150;         % mmHg
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High pressure sensed by baroreceptors initiates baroreflex mechanisms leading to a decrease in systemic

arterial pressure.
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BAROREFLEX IN OPEN-LOOP SYSTEM

params.Pcs = 50;         % mmHg

Similarly, a low pressure sensed by baroreceptors initiates baroreflex mechanisms leading to an increase in 

systemic arterial pressure.
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HEMORRHAGE (CLOSED-LOOP SYSTEM)
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Partial baroreflex (working only on heart rate and systemic resistance) is not as effective in restoring arterial

pressure as full baroreflex when the mechanism controls also venous capacity.
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VENOUS CAPACITY CONTROL
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Changes in arterial pressure correspond to active changes in systemic venous capacity (a big change in 

venous unstressed volume and a very slight change in venous compliance).
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17



A two-pore model of protein 
transport through capillary 

membrane

Mauro Pietribiasi



Background

Starling Equation:

Starling Forces:

Lymphatic flow

Ultrafiltration

Membrane 

flow

*[ ( ) ( )]pdV
Lp t p t UFR

dt
   

Hydraulic

pressure gradient

Plasma volume

variation

Filtration 

coefficient

Oncotic pressure 

gradient



Blood

Interstitium

Large pore (LP)

Small pore (SP)

Large pores fractioŶ  ≈ 5%
Sŵall pores fractioŶ ≈ 95%

Albumin

The model
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To the 

dialyzer 

(UFR)

SP LP
Lymph 

(L)

Plasma

Interstitium 

Vp, Cp

Vi, Ci

V – fluid volume

C – protein 

concentration

����� = ���� + ��ܵ� + ��� − ܷ�ܴ����� = −���� − ��ܵ� − �������� = �ܵݏ� + ��ݏ� + ܦݏ� + ������ݏ� = −�����

Model equations:

Jv – solvent flow

Js – solute flow



The code

Aiŵ: fittiŶg the ŵodel’s output to patients data of plasma volume and protein concentration. The 

parameters to estimate are the filtration coefficient (Lp) and the fraction of large pores (αLP).

Main

-parameters, 

initial 

conditions, 

ecc..

Residuals calculation Model

lsqnonlin

Model

Output
z – optimization variables

opt – optimal parameters

sol – solution

res - residuals

z z

solres

opt

opt

print=true

print=false

z0



Results (good ones...)
Optimal parameters: Lp – 1.85 mL/min/mmHg, αLP – 0.05



Results (...bad ones)
Optimal parameters: Lp – 7.57 mL/min/mmHg, αLP – 0.05
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Multi-parameter sensitivity analysis based

on the information theoretical measure

Agata Charzyńska

Institute of Computer Science, Polish Academy of Sciences
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Outline

1 Mutual Information and entropy

2 Applications to models - Sensitivity Analysis

3 Choice of entropy estimator

4 Example of aplication for p53 model
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Mutual Information

Entropy

The entropy of a random variable X ∼ g(x) is defined as

H(X ) := E[− log g(x)] =

∫

X

− log(g(x))g(x)dx .

Mutual information

Mutual information between continous variables X ∼ g(x)
and Y ∼ f (x) is defined by

I(X ;Y ) := E

[
log

h(x , y)

g(x)f (y)

]
= H(Y ) + H(X )− H(X ,Y )

where (X ,Y ) ∼ h(x , y)
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Sensitivity indices

Definition (sensitivity indices of first order)

Let’s suppose Xi are parameters of the model and Y is model

output, then first order sensitivity measure can be defined as

si =
I(Xi ;Y )

H(Y )
= 1 −

H(Xi)− H(Xi ,Y )

|H(Y )|
.

Definition (sensitivity indices of second order)

Analogously the second order sensitivity measure for pairs

of parameters can be defined as

si,j =
I(Xi ,Xj ;Y )

H(Y )
= 1 −

H(Xi ,Xj)− H(Y ,Xi ,Xj)

|H(Y )|
.

The procedure can be extended for any subset of parameters.
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Problems

Estimation of multidimensional entropy X and Y can have

many dimensions;

Efective estimation with no need to discretize variables;

Entropy continous vs. discrete, continous entropy can be

negative;

Speed of convergence;

Stability of the estimators - dependence on sample;
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Nearest neighbour entropy estimator

NN Entropy Estimator

Ĥ(X ) :=
1

n

n∑

i=1

[− log p̂(xi)] + EMc

p̂(xi) = [(n − 1) · rd(xi) · Vd ]
−1

rd(xi) is the distance of point xi to nearest neighbour in the

sample in d-dimendional space

Vd is d-dimensional volume of unit ball

EMc ≃ 0.5772 is the Euler-Mascheroni constant

Convergence of estimator

Ĥ(X )
a.s.
−−→ H(X )
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Drawbacks of the nn entropy estimator

1 Does not prevent inequality H(X ,Y ) 6 H(X ) + H(Y )

2 Slow convergence for higher dimension for some

distributions eg exponential

3 Does not behave well for marginal distributions

Advantages of the nn entropy estimator

1 It is computtationaly efficient

2 Does not require large samples

3 It is easy to implement!
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ODE model of p53

ODE’s

ẋ =βx − αxx − αxyy
x

x + k

ẏ0 =βyx − α0y0

ẏ =α0y0 − αyy

1 x = 0 - nuclear p53

2 y = 0.8 - nuclear Mdm2

3 y0 = 0.1 - Mdm2

precursor

1 βx = 0.9 - p53 production rate

2 αx = 0 - Mdm2-independent

p53 degradation rate

3 αxy = 1.7 - Mdm2-dependent

p53 degradation rate

4 βy = 1.1 - p53-dependent

Mdm2 production rate

5 αy = 0.8 - Mdm2 degradation

rate

6 α0 = 0.8 - Mdm2 maturation

rate

7 k = 0.0001 - p53 threshold for

deg. by Mdm2
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Posible trajectories

Preturbated parameters trajectories
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Perturbated parameters histograms
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Entropy of parameters and output
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Sensitivity indices of parameters on the global output
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Sensitivity indices of parameters on several outputs
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Sensitivity indices and interactions of pairs of parameters
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SDE for electricity prices – simulations

of trajectories in Matlab and R

Michał Pawłowski

Institute of Computer Science PAS

10\06\2014



Form of the equation

The dynamics of the spot electricity price is driven by the SDE:

dSt = α(ρ(t)− ln St)Stdt + σStdWt + St(e
Jt − 1)dNt ,

where

• St is the electricity price,

• ρ(t) = 1
α

(

dg(t)
dt

+ 1
2σ

2
)

+ g(t),

• g(t) is a deterministic seasonality function,

• σ is a volatility,

• Wt is a Wiener process,

• Jt =
Nt
∑

i=1
Zi , with Nt a Poisson process of a constant intensity

and Z ’s are i.i.d. jump magnitudes of translated
mixed-exponential distribution, i.e. with density



f (z) = qd

m
∑

i=1

qiθie
θi (z−md )✶{z<md}+ pu

n
∑

j=1

pjηje
−ηj (z−mu)✶{z>mu},

where qd , pu  0, qd + pu = 1, qi , pj ∈ (−∞,∞),
m
∑

i=1
qi =

n
∑

j=1
pj = 1, θi > 0, ηj > 1.

qd and pu are the probabilities of negative and positive jumps,
respectively. md < 0 is a minimal (with respect to the absolute
value) value of negative jumps, mu > 0 is a minimal value of
positive jumps.
After decomposing the process into seasonality and noise, one
obtains

St = exp(g(t) + Xt),

where
dXt = −αXtdt + σdWt + dJt .

Xt mean reverts to 0 with the speed α.



Discretization of the process

Integration of the SDE for Xt yields the relation

Xt = Xt−1 exp

(

−α

365

)

+σ

√

√

√

√

1− exp
(

−2α
365

)

2α
N(0, 1)+B

(

λ

365

)

Z (♣),

where

• N(0, 1) is a standard normally distributed variable,

• B
(

λ
365

)

is a Bernoulli variable taking value 1 with the

probability λ
365 , or 0 with the probablility 1− λ

365 ; λ is an
intensity of the Poisson process,

• Z (♣) is a mixed-exponentially distributed random variable
with a vector of estimated parameters ♣.



Results
Time needed for a generation of the trajectories depends on the
chosen software. The calculations for 50 000 trajectories, each with
900 time steps, took:

• in Matlab 15 seconds,
• in R package more than 12 hours

Sample trajectory:



BLOCH SYMULATOR 

Kamil Lorenc 

Michał Kruczkowski 



THEORY 

• In physics and chemistry, specifically in nuclear 

magnetic resonance (NMR), magnetic resonance 

imaging (MRI), and electron spin resonance (ESR), 

the Bloch equations are a set of macroscopic 

equations that are used to calculate the nuclear 

magnetization M = (Mx, My, Mz) as a function of 

time when relaxation times T1 and T2 are present 

• These are phenomenological equations that were 

introduced by Felix Bloch in 1946 



BLOCH EQUATIONS 

M(t) = (Mx(t), My(t), Mz(t)) – nuclear magnetization 

γ - gyromagnetic ratio  

B(t) = (Bx(t), By(t), B0 + ΔBz(t)) - magnetic field experienced by  

the nuclei 

T1,T2 – relaxation times 



INPUT SIGNALS 

 

• Rectangular  

• SINC 

• Adiabatic pulse 

• SSFP – Steady State Free Procession  



RESULTS: RECTANGLE SIGNAL 



RESULTS: SINC SIGNAL  



RESULTS: ADIABATIC PULSE 



RESULTS: SSFP 



CONCLUSSIONS 

• Preliminary results for different input signals 

were presented 

• Future works should be focused on addition 

noise to our model 

 



Thank you for your attention 



function [Mt Ml] = bloch (grad, omega, amp, T, params) 

    Mt = zeros(length(params.omegaf),length(params.zrange)); 

    Ml = zeros(length(params.omegaf),length(params.zrange)); 

    k=1; l=1; 

    opt = odeset('RelTol',1e-5,'AbsTol',1e-6); 

    for omega0 = params.omegaf 

        k=1; 

        for z = params.zrange 

            sol = ode45(@model, [0 T],params.x0,opt); 

            Mt(l,k) = sqrt(sol.y(1,end).^2+sol.y(2,end).^2); 

            Ml(l,k) = sol.y(3,end);             

            k = k+1; 

        end 

        l = l+1; 

    end 

function dM=model(t,M) 

        dM=zeros(3,1); 

        B1 = feval(amp,t); 

        omegarf = feval(omega,t); 

        B0eff = params.B0 + z*feval(grad,t); 

        dM(1) = M(2)*(B0eff*params.gyro+omega0-omegarf) - M(1)/params.T2; 

        dM(2) =-M(1)*(B0eff*params.gyro+omega0-omegarf) + params.gyro*M(3)*B1-

M(2)/params.T2; 

        dM(3) =-params.gyro*M(2)*B1 - (M(3)-1)/params.T1; 

    end 

end 

SCRIPT 


	Mutual Information and entropy
	Applications to models - Sensitivity Analysis
	Choice of entropy estimator
	Example of aplication for p53 model

