
MATHEMATICAL AND COMPUTER
MODELING OF NONLINEAR BIOSYSTEMS I
COMPUTER LABORATORY V: Interactions between populations

(competition/mutualism), May model

Ph. D. Programme 2013/2014

Project co-financed by European Union within the framework of European Social Fund

Comptetition between two species

The classic two species competition model reads

Ṅ1 = r1N1

(
1− N1

K1
− a12

N2
K2

)
,

Ṅ2 = r2N2

(
1− N2

K2
− a21

N1
K1

)
,

where all parameters are positive.

Three scenarios are possible depending on the parameters values:

Mutualism between two species

The classic two species mutualism model reads

Ṅ1 = r1N1

(
1− N1

K1
+ b12N2

)
,

Ṅ2 = r2N2

(
1− N2

K2
+ b21N1

)
,

where all parameters are positive.

Two scenarios are possible depending on the parameters values:

Case study

Suppose that we performed an ecological experiment and introduced 10
individuals from species A and 40 individuals from species B into a fixed
and previously empty environment.

We counted carefully number of individuals after 0, 7, 14, 28, 42, 56, 70,
84, 98 days.

On the basis of observations we want to answer the following question:
Question: Do we observe competition or cooperation between those two
populations?

Possible way of answering: fit both considered models to data.
That is exactly what we will do today.

Step 1 - read data to MATLAB

1 Download a csv file containing experimental measurements from:

http://www.mimuw.edu.pl/~poleszczuk/Jan_Poleszczuk/Courses/
Entries/ 2014/3/4_Mathematical_and_computer_modeling_of_
nonlinear_biosystems_I_files/data.csv

Part of file content:

Day Species 1 Species 2
0 10 40
7 57 147

2 Implement MATLAB function which reads data from downloaded
file

input argument: file name;
output variable: structure with fields ”t” and ”measurements”
(moments of measurements and measurements values, respectively).

Hint: use csvread function

Step 1 - solution

function data = readData(filename)

rawData = csvread(filename,2);
data.t = rawData(:,1)’;
data.measurements = rawData(:,2:3)’;

end

Step 2 - solution to the competition model

1 Implement MATLAB function which for given parameters and initial
conditions returns solution to the competition model:

2 function should take three arguments:
vector of initial conditions,
mesh of points at which the solution has to be calculated,
structure with parameters values;

3 function should return solution as a matrix.

Step 2 - solution

function sol = solveCompetition(init, T, par)

sol = ode45(@model,[0 T(end)],init);
sol = deval(sol, T);

function y=model(~,x)
y=zeros(2,1);
y(1)=par.r1*x(1)*(1-x(1)/par.K1-par.a12*x(2)/par.K2);
y(2)=par.r2*x(2)*(1-x(2)/par.K2-par.a21*x(1)/par.K1);

end
end

Step 3 - solution to the cooperation model

1 Implement MATLAB function which for a given parameters and
initial conditions returns solution to the cooperation model

2 function should take three arguments:
vector of initial conditions,
mesh of points at which the solution has to be calculated,
structure with parameters values;

3 function should return solution as a matrix.

Step 3 - solution

function sol = solveMutualism(init, T, par)

sol = ode45(@model,[0 T(end)],init);
sol = deval(sol, T);

function y=model(~,x)
y=zeros(2,1);
y(1)=par.r1*x(1)*(1-x(1)/par.K1+par.b12*x(2));
y(2)=par.r2*x(2)*(1-x(2)/par.K2+par.b21*x(1));

end
end

Step 4 - auxiliary functions

1 Implement a MATLAB function which for a given structure returns a
vector containing values of all its fields (we assume that each field
has a scalar value).

1 Implement a MATLAB function which for given vector and structure
returns a structure with the same fields as the input structure, but
with values taken from the input vector (we assume that the vector
has the same length as the number of field in the structure).

Step 4 - solution

function x = initialize(par)
f = fields(par);
x = zeros(size(f));
for i=1:length(f)
x(i) = initParam.(f{i});

end
end

function par = update(x, par)
f = fields(par);
for i=1:length(f)
par.(f{i}) = x(i);

end
end

We could also use struct2cell and cell2struct functions.

Step 5 - fitting function

1 Implement a MATLAB function which for given model, initial
parameters and experimental data finds the best fitting model curve.

2 In order to find the best fitting model curve we minimize the sum of
squared differences between data and model solution.

3 Function should take three arguments
model as a function handle,
initial parameters values as a structure,
structure with data (taken from step 1).

4 Function should return two variables
parameters for which the model solution has the lowest
approximation error,
approximation error,

Hint: Use fminsearch function.

Step 5 - solution

function [par, err] = fitModel(model, initParam, data)

x0 = initialize(initParam);

[x, err]=fminsearch(@F,x0);
par = update(x, initParam);

function y = F(x)
parN = update(x,initParam);
y=(feval(model,data.measurements(:,1),data.t,parN)-...
data.measurements)./data.measurements;
y=sum(sum(y.^2));

end
end

Step 6 - initial parameters values

1 Implement a MATLAB function which returns the initial parameters
values (initial guesses) for both considered models.

2 Parameter should be estimated from experimental data if possible.
3 Function should take the structure with experimental data as an

input (same as in Step 1).
4 Function should return two data structures which are consistent with

models implementation (Step 2 and 3).

Step 6 - solution

function [initParC, initParM] = initialParams(data)
initPar.K1 = max(data.measurements(1,:));
initPar.K2 = max(data.measurements(2,:));

initPar.r1 = (data.measurements(1,2)-data.measurements(1,1))...
/data.t(2)/data.measurements(1);
initPar.r2 = (data.measurements(2,2)-data.measurements(2,1))...
/data.t(2)/data.measurements(2);

initParC=initPar;
initParC.a12 = 0.5; %stability
initParC.a21 = 0.5; %stability

initParM=initPar;
initParM.b12 = 0.05/(initPar.K1);
initParM.b21 = 0.05/(initPar.K2);
end

Final step

1 Write a MATLAB script in which both models are fitted to the
experimental data.

2 Use functions from previous steps.
3 Compare minimal approximation errors obtained with both models.
4 Make two plots (separate for each model) showing experimental

data and best approximating model curves. Plotting should be done
using separate function.

Final step - solution (part 1)

clear all;

data = readData(’data.csv’);

[initParC, initParM] = initialParams(data);

[parC, errC] = fitModel(@solveCompetition, initParC, data);
[parM, errM] = fitModel(@solveMutualism, initParM, data);

[errC, errM]

T = linspace(data.t(1),data.t(end),100);
solC=solveCompetition(data.measurements(:,1), T, parC);
solM=solveMutualism(data.measurements(:,1), T, parM);

plotFit(T,solC,data,1)
plotFit(T,solM,data,2)

Final step - solution (part 2)

function plotFit(T,sol,data,f)
set(0,’DefaultAxesFontSize’,18)
figure(f)
clf
hold on
pl1=plot(data.t, data.measurements,’LineStyle’,’none’,...
’LineWidth’,2);
set(pl1(1),’Marker’,’o’)
set(pl1(2),’Marker’,’s’)
pl2=plot(T,sol,’LineWidth’,2);
set(pl2(2),’LineStyle’,’--’)
hold off
legend({’N_1 data’,’N_2 data’,’N_1 model’,’N_2 model’},...
’Location’,’SouthEast’)
xlabel(’day’)
grid on
box on
end

Final outcome

Competition model Cooperation model

Error: 0.0678 Error: 0.2775

It seems that the populations compete with each other.
In addition b21 after fitting became negative...

May model

We could also consider the following predator-prey model

Ṅ1 = r1N1

(
1− N1

K1

)
− a N1N2

1+aN1
,

Ṅ2 = r2N2

(
1− N2

K2N1

)
,

where all parameters are positive.

It could be that the populations that we investigated experimentally are
not competing/cooperating, but are in the predator-prey relationship
described by the above model.

Exercise: Compare the May model with the experimental data
considered in the previous exercise.

Comparizon of the May model with data

Approximation error: 0.9122.

May model gives the biggest approximation error.

IMPORTANT

Fminsearch is a local fitting procedure, and thus the above conclusions
might be dependent on the initial parameter guesses.

